
RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

Today Linux is commonly deployed on virtual machines in the cloud, IoT devices, and
personal computers. Updating software on Linux usually requires downloading software
packages from remote repositories. Downloading and updating software on multiple devices at
the same time can cause heavy network usages and slow down software updating progress in an
organization.

In this paper, we developed a new software tool, namely APT-IPFS, using The InterPlanetary
File System (IPFS) for enhancing features of the apt Linux package manager to address the
above challenges. IPFS is a distributed file system that collectively uses peer-to-peer resources to
store data. APT-IPFS extends the Debien’s APT tool by caching the newly downloaded packages
on IPFS storages of an organization. Upon receiving a download request, APT-IPFS searches for
the requested package in the IPFS storages first before retrieving it from a remote repository.

APT-IPFS has been implemented for the Debian-based distribution of Linux software
packages. In this paper, we address the key design issues and discuss the self-hosted Linux
software repository framework implemented using IPFS. We have also conducted a preliminary
experiment to show the reductions of response times of APT-IPFS over the traditional APT
software.

Abstract

Introduction

Preliminary Performance Comparisons Conclusions

[1] Benet, J. (2014). IPFS - Content Addressed, Versioned, P2P File System.

Retrieved from https://github.com/ipfs/papers/raw/master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf

[2] Protocol Labs. (2017). IPFS is the Distributed Web. Retrieved April 11, 2017, from
https://ipfs.io/

[3] Wang, L., & Kangasharju, J. (2013). Measuring large-scale distributed systems: case of
bittorrent mainline dht. 2013 IEEE Thirteenth International Conference (pp. 1-10). IEEE.

[4] Mazieres, D., & Kaashoek, M. F. (1998). Escaping the evils of centralized control with self-
certifying pathnames. n Proceedings of the 8th ACM SIGOPS European workshop on Support
for composing distributed applications (pp. 118-125). ACM.

References

https://github.com/MasterTos/apt-ipfs

In a large organization, a significant amount network bandwidth must be used for software
updates since many computers within the organization may perform software updates at the same
time. For examples, the organization may have a private or public cloud that hosts a large
number of virtual machines (VMs), containers, and bare medal servers. Moreover, the
organization may operate a large number of IoT devices in its networks. In some cases,
applications may consist of many software components or services, which require updates at the
same time. As a result, the organization must pay a lot of money to provision high networking
bandwidths for updating their applications. If the bandwidths are not enough, the updates can
take a long time or fail. Since software updates compete for network bandwidths, they may also
interfere with networking performances of the applications. To overcome these problems, a
powerful caching solution is needed.

This paper proposed a new solution for caching software packages, namely APT-IPFS, based
on the InterPanetary File System (IPFS). IPFS is a decentralized file system based on a peer-to-
peer protocol. It adds contents by broadcasting a unique torrent file to every peer and starts to
seed the file. IPFS could be seen as a single bittorent swarm which can be implemented in the
network of the organization.

Computer Sciences, Thammasat University, Thailand

Wisit Tipchuen (wisit_t@sci.tu.ac.th) and Asst. Prof. Dr. Kasidit Chanchio

APT-IPFS
Development of software using The InterPlantary File System for enhancing features of Linux package manager

Proposed mechanism

In the Figure above, APT-IPFS is installed on a local computer (the "local node" in the Figure)
in a network of an organization. This "local node" may be a virtual machine (VM), a container, a
physical host, or an IoT device. The "server" represents a remote repository server on the
Internet. Finally, the "IPFS swarm" represents the IPFS peer-to-peer framework in the
organization.

The APT-IPFS mechanism operates as follows.

• APT-IPFS searches packages from IPFS swarm, a cluster of IPFS storage nodes, using IPFS
daemon (Step 1 in the Figure).

• IPFS daemon lookups the cryptographic hash of the package in the IPFS swarm (2) and
returns search result to the IPFS daemon (3). IPFS daemon, in turn, returns search result to
APT-IPFS (4).

• Base on the search result, APT-IPFS decides to use either IPFS swarm or a remote APT
repository server to download the packages and sends decision information to Linux packages
downloader. (5)

• If the packages are founded in the IPFS swarm, they would be downloaded from multiple
IPFS storage nodes in parallel using Linux packages downloader. (6a)

• Otherwise, IPFS falls back to download the packages from the remote APT repository server
using Linux packages downloader (6b).

• After APT-IPFS receives the packages from Linux packages downloader (7), it publishes the
packages to IPFS swarm (8) for future package searching and downloads.

0

2

4

6

8

10

12

14

16

Firefox vlc gimp htop

Download Time in second

APT APT-IPFS

To this end, we have presented APT-IPFS a novel peer-to-peer distributor that sits between
client and server, providing efficient and transparent downloading and updating services for
software packages. We have addressed the key design issues and discuss the self-hosted Linux
software repository framework implemented using IPFS. We have also conducted a preliminary
experiment to show the reductions of response times and network usages of APT-IPFS over the
traditional APT software. APT-IPFS has been used in conjunction with Debian-based distribution
of Linux software packages and is also available in the latest release of Ubuntu. Existing user
statistics have suggested that it interacts well with clients and substantially reduces server cost.

We have conducted a preliminary evaluation by comparing APT-IPFS performance against
that of the APT software. In the experiment, we uses APT and APT-IPFS to download 4 software
packages as illustrated in the graph below. The packages are downloaded from the default ubuntu
repository to a Docker container running ubuntu 16.04. In case of APT-IPFS, we assume that
some users in an organization have already used APT-IPFS to download these packages to their
containers. As a result, the packages are already available in IPFS. The IPFS swarm framework
used in this experiment has its storage nodes in 5 containers. The APT-IPFS performance results
reported in the graph show significant performance gains over APT when a user use APT-IPFS to
download software that have been downloaded before.

