GRAPLEr Platform Accelerates Whole-Ecosystem Simulation Modeling to Increase Understanding of Climate Change Impacts on Lake Nutrient Cycling

Kaitlin J. Farrell^{1,*}, Cayelan C. Carey¹, Arianna I. Krinos¹, Nicole K. Ward¹, Paul C. Hanson², Renato J. Figueiredo³, Vahid Daneshmand³, and Kensworth Subratie³

¹Department of Biological Sciences, Virginia Tech, USA; ²Center for Limnology, University of Wisconsin, USA; ³Advanced Computing and Information Systems Laboratory, University of Florida, USA; *Email: farrellk@vt.edu, 😏 @farrellkj2

Ecology in the Era of Rapid Global Change

- Ecologists use simulation models to predict how climate warming will affect lake ecosystem processes like nitrogen and phosphorus cycling
- Lake responses to climate warming may depend on historical climate and land use
- Comparing lakes with different land use can provide insights into importance of local (land use) vs. regional (climate) drivers

Warming Effects Depend on Initial Lake Water Quality

• Mendota tends to be warmer, lower oxygen than Sunapee under baseline conditions

Warming increases frequency of low-oxygen bottom-water conditions

General Lake Model for Whole-Ecosystem Simulation Modeling

Schematic of the General Lake Model showing data inputs (blue text) and simulated processes (black text; Hipsey et al. 2014).

Lake Expedition: Using GRAPLEr to Accelerate Discovery in Limnology

- The Lake Expedition is an interdisciplinary collaboration between PRAGMA and GLEON (Global Lakes Ecological Observatory Network) researchers
- GRAPLEr distributed computing platform brings power of distributed computing to the fingertips of lake ecology modelers
- Lake simulations distributed across 100's of processing nodes

- Hypoxia (< 2 mg L-¹ dissolved O₂) contributes to N and P release from lake sediments
- Bottom-waters (25 m) in both lakes experienced more days of hypoxia under +7°C air temperature scenario
- Median increase of 22 more days of hypoxia in Mendota; 41 more days in Sunapee

Surface nitrogen and phosphorus responses differ by lake

- Mean annual total nitrogen concentrations in epilimnion (0-6 m) decreased in both lakes
 - _ _ _
- increased in both lakes

Mean annual total phosphorus

that are aggregated into a peer-to-peer overlay virtual private network, dramatically reducing computation time

Outputs from model runs are aggregated and returned to user for analysis and visualization in R

For more details, see Subratie et al. 2017 or visit the GRAPLEr website (<u>www.graple.org</u> or snap this QR code)

 15% in Mendota; 18% in Sunapee between baseline and +7°C air temperature scenarios

 9% 1 in Mendota; 19% 1 in Sunapee between baseline and +7°C air temperature scenarios

concentrations in epilimnion (0-6 m)

Implications and Next Steps

Ecologically

 Nutrient concentrations in Sunapee changed more in response to warming than Mendota → this suggests that oligotrophic (low-nutrient) lakes are more sensitive to climate warming than eutrophic (high-nutrient) lakes

Computationally

Distributed computing resources like the GRAPLEr platform accelerate wholeecosystem simulation modeling, which allows ecologists to more effectively predict ecological responses to climate change

Acknowledgements

This work is supported by funding from United States National Science Foundation grants #ACI-1234983, EF-1702506, and ICER-1517823. We appreciate feedback from Carey Lab members Jon Doubek, Ryan McClure, and Mary Lofton during the preparation of this presentation.