Motivation

- Generate image inbetween based on Generative models using variational autoencoders.

Restrictions with previous approaches

- Cannot capture what is not present in the picture
- Often produce blurry image

Long Term Goal – Image inBetween

Proposed Method - Latent-variable based inbetweening

- Directly generate inbetween frame, from other frames

‘Latent-variable’ based method

- Interpolate in the latent space and generate inbetween frame

Evaluation

- Image reconstruction
- Image inbetween

Image Reconstruction

Dataset

Image Inbetween

Conclusion

- Model predicts the spatial location of the object. With the strong interpolation term we still can reconstruct a fair image. For future, we will work with complex objects and video.

Acknowledgement

- This paper is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).
- This work was supported by JSPS KAKENHI Grant Number JP16K00116

Generative Models

- Learns rich and hierarchical probabilistic model.

Variational Autoencoder (VAE)

- Learns a latent representation of the hidden structures of its input data.

Proposed – Loss Function

\[l(x_0, x_1, x_2) = l_{VAE}(x_0) + l_{VAE}(x_1) + l_{VAE}(x_2) + \alpha D_{KL}(q(x_1)\|q(x_0) + q(x_2)) \]

Goal

Minimize: difference of (Z_1 and Z')

Finding:

- Drawback: Network loss increases
- With zero coefficient we have no reconstruction
- Increasing the coefficient network loss increase

How to have ‘such’ latent space?

\[Z' = Z_0 + Z_2 \]